An introduction to orbifolds

Hao Li (NUS)

February 4, 2021
An orbifold is a singular space which is locally modelled by \mathbb{R}^n/G, where G is a finite group.
An orbifold is a singular space which is locally modelled by \mathbb{R}^n/G, where G is a finite group.

1. 1950s, Satake first introduced the concept of orbifold under the name "V-manifold";
An orbifold is a singular space which is locally modelled by \mathbb{R}^n/G, where G is a finite group.

1. 1950s, Satake first introduced the concept of orbifold under the name "V-manifold";

2. 1970s, Thurston gave the name "orbifold" and used it as a technique tool for proving "Hyperbolization Theorem";
An orbifold is a singular space which is locally modelled by \mathbb{R}^n/G, where G is a finite group.

1. 1950s, Satake first introduced the concept of orbifold under the name "V-manifold";

2. 1970s, Thurston gave the name "orbifold" and used it as a technique tool for proving "Hyperbolization Theorem";

3. 1985, physicists Dixon, Harvey, Vafa and Witten studied string theories on Calabi-Yau orbifolds. Later developments include mirror symmetry of Calabi-Yau orbifolds, the Gromov-Witten invariants of symplectic orbifolds, orbifold K theory;
An orbifold is a singular space which is locally modelled by \mathbb{R}^n / G, where G is a finite group.

1. 1950s, Satake first introduced the concept of orbifold under the name "V-manifold";

2. 1970s, Thurston gave the name "orbifold" and used it as a technique tool for proving "Hyperbolization Theorem";

3. 1985, physicists Dixon, Harvey, Vafa and Witten studied string theories on Calabi-Yau orbifolds. Later developments include mirror symmetry of Calabi-Yau orbifolds, the Gromov-Witten invariants of symplectic orbifolds, orbifold K theory;

4. 2000s, Weimin Chen, Yongbin Ruan studied the homotopy groups, cohomology ring of orbifolds . . .
An n-dimensional orbifold \mathcal{O} is a Hausdorff space, called the underlying space, with an open covering $\mathcal{U} = \{U_i\}$ such that
An n-dimensional orbifold \mathcal{O} is a Hausdorff space, called the underlying space, with an open covering $\mathcal{U} = \{U_i\}$ such that

1. Each open set U_i is associated with an orbifold chart (V_i, ϕ_i, U_i, G_i), where G_i is a finite group, $V_i \subset \mathbb{R}^n$ is an open subset that is invariant under an effective action of G_i on \mathbb{R}^n, and $\phi_i : V_i \longrightarrow U_i$ is surjective and induces a homeomorphism $V_i/G_i \longrightarrow U_i$.
An n-dimensional orbifold \mathcal{O} is a Hausdorff space, called the underlying space, with an open covering $\mathcal{U} = \{U_i\}$ such that

(1) Each open set U_i is associated with an orbifold chart (V_i, ϕ_i, U_i, G_i), where G_i is a finite group, $V_i \subset \mathbb{R}^n$ is an open subset that is invariant under an effective action of G_i on \mathbb{R}^n, and $\phi_i : V_i \rightarrow U_i$ is surjective and induces a homeomorphism $V_i/G_i \rightarrow U_i$.

(2) The collection of all orbifold charts $\{(V_i, \phi_i, U_i, G_i)\}$, called the orbifold atlas, satisfies the condition that for each inclusion $U_i \hookrightarrow U_j$, there exists an injective group homomorphism $g_{ij} : G_i \rightarrow G_j$ and a G_i-equivariant embedding $\varphi_{ij} : V_i \rightarrow V_j$ such that $\phi_j \circ \varphi_{ij} = \phi_i$ and φ_{ij} is unique up to composition with elements of G_j.

Hao Li
An introduction to orbifolds
Examples of orbifolds

1. Manifolds are orbifolds. i.e. all G_i are trivial.
Examples of orbifolds

1. Manifolds are orbifolds. i.e. all \(G_i \) are trivial.
2. Manifolds with boundary are orbifolds.
Examples of orbifolds

1. Manifolds are orbifolds. i.e. all G_i are trivial.
2. Manifolds with boundary are orbifolds.
3. Cartesian product of two orbifolds is an orbifold.
Examples of orbifolds

1. Manifolds are orbifolds. i.e. all G_i are trivial.
2. Manifolds with boundary are orbifolds.
3. Cartesian product of two orbifolds is an orbifold.
4. in the theory of modular forms, the action of the modular group $SL(2, \mathbb{Z})$ on the upper half-plane.
Examples of orbifolds

1. Manifolds are orbifolds. i.e. all G_i are trivial.
2. Manifolds with boundary are orbifolds.
3. Cartesian product of two orbifolds is an orbifold.
4. In the theory of modular forms, the action of the modular group $SL(2, \mathbb{Z})$ on the upper half-plane.
5. Polytopes are orbifolds.
Examples of orbifolds

1. Manifolds are orbifolds. i.e. all G_i are trivial.
2. Manifolds with boundary are orbifolds.
3. Cartesian product of two orbifolds is an orbifold.
4. in the theory of modular forms, the action of the modular group $SL(2, \mathbb{Z})$ on the upper half-plane.
5. Polytopes are orbifolds.
 Andreev’s Theorem on three-dimensional compact hyperbolic polyhedra.
Examples of orbifolds

1. Manifolds are orbifolds. i.e. all G_i are trivial.
2. Manifolds with boundary are orbifolds.
3. Cartesian product of two orbifolds is an orbifold.
4. in the theory of modular forms, the action of the modular group $SL(2, \mathbb{Z})$ on the upper half-plane.
5. Polytopes are orbifolds.
 Andreev’s Theorem on three-dimensional compact hyperbolic polyhedra.

[Diagram of orbifolds]
Orbifolds which are global quotients by properly discontinuous actions are usually called **good**, and those which are quotients by finite groups are **very good**.
Orbifolds which are global quotients by properly discontinuous actions are usually called **good**, and those which are quotients by finite groups are **very good**.

Assume a smooth Lie group G acts properly and discontinuously on a manifold M. If the action is free, the quotient M/G is also a manifold; otherwise M/G is a good orbifold.
Orbifolds which are global quotients by properly discontinuous actions are usually called **good**, and those which are quotients by finite groups are **very good**.

Assume a smooth Lie group G acts properly and discontinuously on a manifold M. If the action is free, the quotient M/G is also a manifold; otherwise M/G is a good orbifold.
Examples of good orbifolds

For a small cover $\pi : M^n \rightarrow P^n$, locally modelled by $\mathbb{R}^n/\mathbb{Z}_2^n$, $P^n \cong M^n/\mathbb{Z}_2^n$ is a good orbifold.
Examples of good orbifolds

1. For a small cover $\pi : M^n \rightarrow P^n$, locally modelled by $\mathbb{R}^n/\mathbb{Z}_2^n$, $P^n \cong M^n/\mathbb{Z}_2^n$ is a good orbifold.

2. Classic configuration space

$F(X, n) = \{(x_1, \ldots, x_n) \in X^{\times n}| x_i \neq x_j \text{ if } i \neq j\}$, symmetric group Σ_n acts on $F(X, n)$ freely.
Examples of good orbifolds

1. For a small cover $\pi : M^n \rightarrow P^n$, locally modelled by $\mathbb{R}^n/\mathbb{Z}_2^n$, $P^n \cong M^n/\mathbb{Z}_2^n$ is a good orbifold.

2. Classic configuration space
 $F(X, n) = \{(x_1, \cdots, x_n) \in X^\times n | x_i \neq x_j \text{ if } i \neq j\}$, symmetric group Σ_n acts on $F(X, n)$ freely.
 As to generalization of configuration spaces, such as chromatic configuration space $F(X, \Gamma)$, orbit configuration spaces $F_G(X, n)$.
For a small cover $\pi : M^n \longrightarrow P^n$, locally modelled by $\mathbb{R}^n/\mathbb{Z}_2^n$, $P^n \cong M^n/\mathbb{Z}_2^n$ is a good orbifold.

Classic configuration space

$$F(X, n) = \{(x_1, \cdots, x_n) \in X^\times n | x_i \neq x_j \text{ if } i \neq j\},$$

symmetric group Σ_n acts on $F(X, n)$ freely.

As to generalization of configuration spaces, such as chromatic configuration space $F(X, \Gamma)$, orbit configuration spaces $F_G(X, n)$.

$\text{Aut}(\Gamma)$ on $F(X, \Gamma)$ and $G^\times n \rtimes \Sigma_n$ on $F_G(X, n)$ non free.
A covering of a smooth orbifold \mathcal{O} is a pair $(\hat{\mathcal{O}}, \rho)$, where $\hat{\mathcal{O}}$ is another orbifold and $\rho : \hat{\mathcal{O}} \longrightarrow \mathcal{O}$ is a surjective smooth map. There exists a representing system $((\{V_\alpha\}, \{U_\alpha\}, \{\pi_\alpha\}, \{\rho_{\beta\alpha}\})$ satisfying that

1. For any $U \in \{U_\alpha\}$, the set of connected components of $\pi^{-1}(U)$ is contained in $\{V_\alpha\}$;
2. Each homomorphism $\rho_\alpha : G_{V_\alpha} \longrightarrow G_{U_\alpha}$ is monomorphic, and each $\pi_\alpha : \hat{V}_\alpha \longrightarrow \hat{U}_\alpha$ is a ρ_α-equivariant homeomorphism.
A covering of a smooth orbifold \mathcal{O} is a pair $(\hat{\mathcal{O}}, \rho)$, where $\hat{\mathcal{O}}$ is another orbifold and $\rho : \hat{\mathcal{O}} \rightarrow \mathcal{O}$ is a surjective smooth map. There exists a representing system $(\{ V_\alpha \}, \{ U_\alpha \}, \{ \pi_\alpha \}, \{ \rho_\beta \alpha \})$ satisfying that

(1) For any $U \in \{ U_\alpha \}$, the set of connected components of $\pi^{-1}(U)$ is contained in $\{ V_\alpha \}$;

(2) Each homomorphism $\rho_\alpha : G_{V_\alpha} \rightarrow G_{U_\alpha}$ is monomorphic, and each $\pi_\alpha : \hat{V}_\alpha \rightarrow \hat{U}_\alpha$ is a ρ_α-equivariant homeomorphism.

A universal covering of $\hat{\mathcal{O}}$ is a covering $\hat{\mathcal{O}} \rightarrow \mathcal{O}$ that is the covering of any other coverings of $\hat{\mathcal{O}}$.
A covering of a smooth orbifold \mathcal{O} is a pair $(\hat{\mathcal{O}}, \rho)$, where $\hat{\mathcal{O}}$ is another orbifold and $\rho : \hat{\mathcal{O}} \longrightarrow \mathcal{O}$ is a surjective smooth map. There exists a representing system $(\{V_\alpha\}, \{U_\alpha\}, \{\pi_\alpha\}, \{\rho_{\beta\alpha}\})$ satisfying that

1. For any $U \in \{U_\alpha\}$, the set of connected components of $\pi^{-1}(U)$ is contained in $\{V_\alpha\}$;
2. Each homomorphism $\rho_\alpha : G_{V_\alpha} \longrightarrow G_{U_\alpha}$ is monomorphic, and each $\pi_\alpha : \hat{V}_\alpha \longrightarrow \hat{U}_\alpha$ is a ρ_α-equivariant homeomorphism.

A universal covering of $\hat{\mathcal{O}}$ is a covering $\hat{\mathcal{O}} \longrightarrow \mathcal{O}$ that is the covering of any other coverings of $\hat{\mathcal{O}}$.

Theorem

Any connected orbifold $\hat{\mathcal{O}}$ admits a connected universal covering $\rho : \hat{\mathcal{O}} \longrightarrow \mathcal{O}$.
There are several definitions for orbifold fundamental group.

(1) Consider the based loop space of \((\mathcal{O}, \mathfrak{o})\) consisting of equivalence classes of loops in \(\mathcal{O}\), where \(\mathfrak{o}\) is a non-singular base point. For any \(k \geq 1\), the \(k\)-th homotopy group of \((\mathcal{O}, \mathfrak{o})\), denoted by \(\pi^{orb}_k(\mathcal{O}, \mathfrak{o})\), is defined to be the \((k - 1)\)-th homotopy group of the based loop space \((\Omega(\mathcal{O}, \mathfrak{o}), \mathfrak{d})\).
There are several definitions for orbifold fundamental group.

1. Consider the based loop space of $(\mathcal{O}, \mathfrak{o})$ consisting of equivalence classes of loops in \mathcal{O}, where \mathfrak{o} is a non-singular base point. For any $k \geq 1$, the k-th homotopy group of $(\mathcal{O}, \mathfrak{o})$, denoted by $\pi^\text{orb}_k(\mathcal{O}, \mathfrak{o})$, is defined to be the $(k - 1)$-th homotopy group of the based loop space $(\Omega(\mathcal{O}, \mathfrak{o}), \tilde{\mathfrak{o}})$.

2. Consider the universal covering $\rho : \tilde{\mathcal{O}} \longrightarrow \mathcal{O}$, $\pi^\text{orb}_1(\mathcal{O}, \mathfrak{o}) \cong \text{Deck}(\rho)$.
There are several definition for orbifold fundamental group.

(1) Consider the based loop space of $(\mathcal{O}, \mathfrak{o})$ consisting of equivalence classes of loops in \mathcal{O}, where \mathfrak{o} is non-singular base point.
For any $k \geq 1$, the k-th homotopy group of $(\mathcal{O}, \mathfrak{o})$, denoted by $\pi^\text{orb}_k(\mathcal{O}, \mathfrak{o})$ is defined to be the $(k - 1)$-th homotopy group of the based loop space $(\Omega(\mathcal{O}, \mathfrak{o}), \tilde{\mathfrak{o}})$.

(2) Consider the universal covering $\rho : \hat{\mathcal{O}} \longrightarrow \mathcal{O}$, $\pi^\text{orb}_1(\mathcal{O}, \mathfrak{o}) \cong \text{Deck}(\rho)$.

(3) For a good orbifold, i.e. $G \hookrightarrow Y \twoheadrightarrow Y/G$, consider the Borel construction $Y_G \cong Y \times_G EG$, then $\pi^\text{orb}_k(Y/G) \cong \pi_k(Y_G)$.
Examples

1. If O is a manifold, $\pi_1^{orb} \cong \pi_1$.
Examples

1. If \(O \) is a manifold, \(\pi_1^{orb} \cong \pi_1 \).

2. For a good orbifold, i.e. \(G \hookrightarrow Y \to Y/G \), we have

\[
1 \longrightarrow \pi_1(Y) \longrightarrow \pi_1^{orb}(Y/G) \longrightarrow G \longrightarrow 1
\]
Examples

1. If O is a manifold, $\pi_{1}^{orb} \cong \pi_{1}$.

2. For a good orbifold, i.e. $G \hookrightarrow Y \rightarrow Y/G$, we have

$$1 \rightarrow \pi_{1}(Y) \rightarrow \pi_{1}^{orb}(Y/G) \rightarrow G \rightarrow 1$$

3. For a small cover $\pi : M^{n} \rightarrow P^{n}$, we have

$$1 \rightarrow \pi_{1}(M^{n}) \rightarrow \pi_{1}^{orb}(P^{n}) \rightarrow G \rightarrow 1$$

where $\pi_{1}^{orb}(P^{n})$ is the right-angled Coxeter group associated with P^{n}. Let K be the dual complex of P.

$$\pi_{1}^{orb}(P^{n}) \cong \langle s, s \in V(K) | s^{2} = 1, (st)^{2} = 1, if (st) \in E(K) \rangle$$
Examples

1. If \mathcal{O} is a manifold, $\pi_1^{\text{orb}} \cong \pi_1$.

2. For a good orbifold, i.e. $G \hookrightarrow Y \rightarrow Y/G$, we have

$$1 \rightarrow \pi_1(Y) \rightarrow \pi_1^{\text{orb}}(Y/G) \rightarrow G \rightarrow 1$$

3. For a small cover $\pi: M^n \rightarrow P^n$, we have

$$1 \rightarrow \pi_1(M^n) \rightarrow \pi_1^{\text{orb}}(P^n) \rightarrow G \rightarrow 1$$

where $\pi_1^{\text{orb}}(P^n)$ is the right-angled Coxeter group associated with P^n. Let K be the dual complex of P.

$$\pi_1^{\text{orb}}(P^n) \cong \langle s, s \in V(K) | s^2 = 1, (st)^2 = 1, if (st) \in E(K) \rangle$$

If P^2 is 4-gon, $\pi_1^{\text{orb}}(P^2)$ is

$$\langle a, b, c, d | a^2 = b^2 = c^2 = d^2 = 1, ab = ba, ad = da, bc = cb, cd = dc \rangle$$
Σ_n acts on $F(X, n)$ induces

$$1 \rightarrow \pi_1(F(X, n)) \rightarrow \pi_1^{orb}(F(X, n)/\Sigma_n) \rightarrow \Sigma_n \rightarrow 1$$
1. Σ_n acts on $F(X, n)$ induces

$$1 \to \pi_1(F(X, n)) \to \pi_1^{orb}(F(X, n)/\Sigma_n) \to \Sigma_n \to 1$$

2. $\text{Aut}(\Gamma)$ on $F(X, \Gamma)$ induces

$$1 \to \pi_1(F(X, \Gamma)) \to \pi_1^{orb}(F(X, \Gamma)/\text{Aut}(\Gamma)) \to \text{Aut}(\Gamma) \to 1$$
\[\Sigma_n \text{ acts on } F(X, n) \text{ induces} \]
\[
1 \longrightarrow \pi_1(F(X, n)) \longrightarrow \pi^\text{orb}_1(F(X, n)/\Sigma_n) \longrightarrow \Sigma_n \longrightarrow 1
\]

\[\text{Aut}(\Gamma) \text{ on } F(X, \Gamma) \text{ induces} \]
\[
1 \longrightarrow \pi_1(F(X, \Gamma)) \longrightarrow \pi^\text{orb}_1(F(X, \Gamma)/\text{Aut}(\Gamma)) \longrightarrow \text{Aut}(\Gamma) \longrightarrow 1
\]

\[G^{\times n} \rtimes \Sigma_n \text{ on } F_G(X, n) \text{ induces} \]
\[
1 \longrightarrow \pi_1(F_G(X, n)) \longrightarrow \pi^\text{orb}_1(F_G(X, n)/(G^{\times n} \rtimes \Sigma_n)) \longrightarrow G^{\times n} \rtimes \Sigma_n \longrightarrow 1
\]
1 Σ_n acts on $F(X, n)$ induces

$$1 \rightarrow \pi_1(F(X, n)) \rightarrow \pi_1^{orb}(F(X, n)/\Sigma_n) \rightarrow \Sigma_n \rightarrow 1$$

2 $\text{Aut}(\Gamma)$ on $F(X, \Gamma)$ induces

$$1 \rightarrow \pi_1(F(X, \Gamma)) \rightarrow \pi_1^{orb}(F(X, \Gamma)/\text{Aut}(\Gamma)) \rightarrow \text{Aut}(\Gamma) \rightarrow 1$$

3 $G^{\times n} \rtimes \Sigma_n$ on $F_G(X, n)$ induces

$$1 \rightarrow \pi_1(F_G(X, n)) \rightarrow \pi_1^{orb}(F_G(X, n)/(G^{\times n} \rtimes \Sigma_n)) \rightarrow G^{\times n} \rtimes \Sigma_n \rightarrow 1$$
Other properties of orbifolds

1. Seifert-Van Kampen Theorem for orbifold fundamental groups.
Other properties of orbifolds

1. Seifert-Van Kampen Theorem for orbifold fundamental groups.
2. Long exact sequence of orbifold fibrations (coverings).
Other properties of orbifolds

1. Seifert-Van Kampen Theorem for orbifold fundamental groups.
2. Long exact sequence of orbifold fibrations (coverings).
3. Orbifold cohomology theory.
Other properties of orbifolds

1. Seifert-Van Kampen Theorem for orbifold fundamental groups.
2. Long exact sequence of orbifold fibrations (coverings).
3. Orbifold cohomology theory.
4. Euler characteristics of orbifolds.
Other properties of orbifolds

1. Seifert-Van Kampen Theorem for orbifold fundamental groups.
2. Long exact sequence of orbifold fibrations (coverings).
3. Orbifold cohomology theory.
4. Euler characteristics of orbifolds.
5. Orbifold bundles and orbifold K theory.