The combinatorial information of polytopes.

c.f. Chapter I. "Toric Topology". V.M. Buchstaber, T.E. Panov

I) Definition of convex polytopes in \mathbb{R}^n

Two equivalent definitions.

1. A convex polytope is the convex hull $\text{conv}(\vec{v}_1, \ldots, \vec{v}_k)$ of a finite set of points $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^n$.

2. A convex polyhedron P is a nonempty intersection of finitely many half-spaces in \mathbb{R}^n:

$$P := \{ \vec{x} \in \mathbb{R}^n \mid \langle \vec{a}_i, \vec{x} \rangle + b_i \geq 0 \text{ for } i = 1, \ldots, m \}$$

where $\vec{a}_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$. A convex polytope is a bounded convex polyhedron.

E.g. 1. simplex Δ^n

$$\text{conv}(\vec{e}_1, \ldots, \vec{e}_n)$$

or:

$$\begin{cases} x_i \geq 0 & i = 1, \ldots, n \\ -x_1 - \cdots - x_n + 1 \geq 0 \end{cases}$$

2. n-cube $I^n = [0,1]^n$

$$\text{conv}(\epsilon_1 \vec{e}_1 + \epsilon_2 \vec{e}_2 + \cdots + \epsilon_n \vec{e}_n)$$

or:

$$\{ 0 \leq x_i \leq 1. \ i = 1, \ldots, n \}$$

Assume P^n is bounded.
II) face poset

A supporting hyperplane of P is a affine hyperplane H, s.t. $H \cap P$ non empty, and P lies in one side of H.

\[p^n = \Delta^2 \]

The intersection $P \cap H$ is called a face of P^n.

- 0-dim faces are called vertices
- 1-dim faces are called edges
- codim-1 faces are called facets. (corresponding to $\langle a_i, x \rangle + b_i = 0$)

Each face is the intersection of several facets.
The faces of a given polytope P^n form a partially ordered set (poset) with respect to inclusion, called face poset of P^n.

Note: The one skeleton of P^n is a graph.

- Two polytopes are combinatorially equivalent if and only if their face posets are isomorphic
III) simple, simplicial polytopes and dual polytopes

- If exactly \(n \) facets meet at each vertex of \(P^n \), then \(P^n \) is simple.

 e.g. \(\Delta^n, I^n \)

 counterexample.

 octahedron.

- If each facet is a simplex, then \(P^n \) is simplicial. (come from triangulation)

Note. If \(P^n \) is simple, each \(n \)-face can be expressed as intersection of \((n-1) \) facets uniquely.

- The polar set of a polyhedron \(P^n \subset \mathbb{R}^n \) is

 \(P^* := \{ \mathbf{u} \in \mathbb{R}^n \mid \langle \mathbf{u}, \mathbf{z} \rangle \leq 0 \text{ for all } \mathbf{z} \in P^n \} \)

 actually, \(\mathbf{z} \) can be replaced by vertex \(\mathbf{v}_i \).

Prop. If \(\mathbf{z} \in P^n \), \(P^* = \text{conv}(\mathbf{a}_1, \ldots, \mathbf{a}_m) \), and \((P^n)^* = P^n\).

 e.g. \((\Delta^n)^* = \Delta^n\); \((I^n)^* = \text{conv} \langle \pm e_k \rangle\)

 cross-polytope.

Thm: If \(P^n \) and \(P^* \) are dual polytopes, the face poset of \(P^* \) is obtained from face poset of \(P^n \) by reversing the inclusion relation.

 i.e.\[
 \text{vert}(P^n) \xleftarrow{1:1} \text{facets of } P^* \\
 \text{facets of } P^n \xleftarrow{1:1} \text{vert}(P^*)
 \]

Prop: \(P^n \) is simple \(\iff \) \(P^* \) is \(\Delta^n \)-simplicial. → related to simplicial complex.
IV) operations: products, hyperplane cuts and connected sums

1) products $P_1 \times P_2$. Products of two simple polytopes is also simple.

2) face truncation:

3) connected sum $\#$ at vertex.

Any 3-simple polytope can be obtained from Δ^3 by finitely many face truncations.

Connected sum corresponding to connected sum of two manifolds.

$\Delta^n \# \Delta^n \rightarrow \Delta^{n+1} \times I$
v). Face vectors and Dehn-Sommerville relations.

Def. Let P^n be a convex n-polytope. f_i be the number of i-faces.

- face vector (f-vector) of P^n.
 $\vec{f}(P) = (f_0, f_1, \ldots, f_n)$.
 $f_n = 1$

- $F(p) (s, t) = s^n + f_1 s^{n-1} t + \ldots + f_i s^{n-i} t^i + \ldots + f_n t^n$

- h-vector $h(P) = (h_0, h_1, \ldots, h_n)$
 $H(p) (s, t) = F(p) (s-t, t)$.

- g-vector of simple polytope P^n.
 $g(P) = (g_0, g_1, \ldots, g_{n+1})$.
 $g_1 = h_1 - h_0$.
 $g_0 = 1$

- g-theorem: necessary and sufficient condition for simple n-polytope.

- g-conjecture: ... for triangulated spheres.

e.g. Δ^n.

- $\vec{f}(\Delta^n) = (1, (\binom{n}{0}), \ldots, (\binom{n}{i}), 1)$

- $\vec{h}(\Delta^n) = (1, 1, \ldots, 1, 1)$

f-vector and h-vector are combinatorial invariant of polytope, but not complete.

Thm: (Dehn-Sommerville relations). The h-vector of any simple n-polytope is symmetric.

For small cover $(\mathbb{Z}_2)^n \to M^n \to P^n$, the i-th mod 2 Betti number $b_i(M^n) = h_i(P^n)$. Poincaré duality.
VI) Face ring and equivariant cohomology.

For simple polytope P^n with m facets, the dual polytope P^* is a simplicial complex on the set $\{m_1, \ldots, m_j\}$.

The face ring (or Stanley-Reisner ring) of P^n is:

$$k(P) = k[\mathbf{v}_1, \ldots, \mathbf{v}_m]/I$$

where $V_i \mapsto$ facet F_i of P^n.

I is the ideal generated by those monomials v_i for which $I \subseteq \{m_j\}$ for which $\bigcap F_i = \emptyset$.

E.g.

1. $k(\Delta^n) = k[\mathbf{v}_1, \ldots, \mathbf{v}_{n+1}]/(V_1V_3, V_2V_4, \ldots, V_{n-1}V_n)$
2. $k(I^3) = k[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]/(V_4V_5V_6)$
3. $k[P \times P'] = k[P] \otimes k[P']$

Thm (Bruns-Gubeladze) Let k be a field, face ring $k(P)$ is a complete invariants of simple polytope P.

The Borel construction:

$$BP^n = \bigoplus_{\mathbb{Z}_+} X_{\mathbb{Z}_+}^n M^n$$

$$= (\bigoplus_{\mathbb{Z}_+} X_{\mathbb{Z}_+}^n M^n)$$

$$H^*(BP^n; \mathbb{Z}) \cong \mathbb{Z}[P^n].$$

Complex case:

$$T^n_\mathbb{Z} \xrightarrow{M^n} \mathbb{C}^n \text{ quasitopic manifold} \xrightarrow{\mathbb{Z}} H^*_\mathbb{Z}(M^n; \mathbb{Z}) \cong \mathbb{Z}[P^n].$$
For simple polytope P^n with m facets, assign each facet F_i a vector $\lambda_i \in \mathbb{Z}^n$, s.t. if $\bigcap_{j=1}^n F_j \neq \emptyset$, \{\lambda_{ij}\} span (\mathbb{Z}^n).

Then we get a characteristic matrix:

$$\Lambda : \mathbb{Z}^n \rightarrow \mathbb{Z}^n$$

$$\Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_m \end{pmatrix}_{n \times m}$$

We can get a small cover M^n based on (P^n, Λ) and $H^\ast (M, \mathbb{Z}) \cong \mathbb{Z}^\ast P^n/J$

compared with $H^\ast_{\mathbb{Z}^n} (M, \mathbb{Z}) \cong \mathbb{Z}^\ast P^n$.

Similar expression for complex cases.